3.77 \(\int \frac{1}{(a+a \sec (c+d x))^4} \, dx\)

Optimal. Leaf size=111 \[ -\frac{32 \tan (c+d x)}{21 a^4 d (\sec (c+d x)+1)}-\frac{11 \tan (c+d x)}{21 a^4 d (\sec (c+d x)+1)^2}+\frac{x}{a^4}-\frac{2 \tan (c+d x)}{7 a d (a \sec (c+d x)+a)^3}-\frac{\tan (c+d x)}{7 d (a \sec (c+d x)+a)^4} \]

[Out]

x/a^4 - (11*Tan[c + d*x])/(21*a^4*d*(1 + Sec[c + d*x])^2) - (32*Tan[c + d*x])/(21*a^4*d*(1 + Sec[c + d*x])) -
Tan[c + d*x]/(7*d*(a + a*Sec[c + d*x])^4) - (2*Tan[c + d*x])/(7*a*d*(a + a*Sec[c + d*x])^3)

________________________________________________________________________________________

Rubi [A]  time = 0.160296, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3777, 3922, 3919, 3794} \[ -\frac{32 \tan (c+d x)}{21 a^4 d (\sec (c+d x)+1)}-\frac{11 \tan (c+d x)}{21 a^4 d (\sec (c+d x)+1)^2}+\frac{x}{a^4}-\frac{2 \tan (c+d x)}{7 a d (a \sec (c+d x)+a)^3}-\frac{\tan (c+d x)}{7 d (a \sec (c+d x)+a)^4} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(-4),x]

[Out]

x/a^4 - (11*Tan[c + d*x])/(21*a^4*d*(1 + Sec[c + d*x])^2) - (32*Tan[c + d*x])/(21*a^4*d*(1 + Sec[c + d*x])) -
Tan[c + d*x]/(7*d*(a + a*Sec[c + d*x])^4) - (2*Tan[c + d*x])/(7*a*d*(a + a*Sec[c + d*x])^3)

Rule 3777

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(Cot[c + d*x]*(a + b*Csc[c + d*x])^n)/(d*(
2*n + 1)), x] + Dist[1/(a^2*(2*n + 1)), Int[(a + b*Csc[c + d*x])^(n + 1)*(a*(2*n + 1) - b*(n + 1)*Csc[c + d*x]
), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 3922

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[((b
*c - a*d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e
+ f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sec (c+d x))^4} \, dx &=-\frac{\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac{\int \frac{-7 a+3 a \sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx}{7 a^2}\\ &=-\frac{\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac{2 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^3}+\frac{\int \frac{35 a^2-20 a^2 \sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{35 a^4}\\ &=-\frac{11 \tan (c+d x)}{21 a^4 d (1+\sec (c+d x))^2}-\frac{\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac{2 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^3}-\frac{\int \frac{-105 a^3+55 a^3 \sec (c+d x)}{a+a \sec (c+d x)} \, dx}{105 a^6}\\ &=\frac{x}{a^4}-\frac{11 \tan (c+d x)}{21 a^4 d (1+\sec (c+d x))^2}-\frac{\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac{2 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^3}-\frac{32 \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{21 a^3}\\ &=\frac{x}{a^4}-\frac{11 \tan (c+d x)}{21 a^4 d (1+\sec (c+d x))^2}-\frac{\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac{2 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^3}-\frac{32 \tan (c+d x)}{21 d \left (a^4+a^4 \sec (c+d x)\right )}\\ \end{align*}

Mathematica [B]  time = 0.372984, size = 224, normalized size = 2.02 \[ \frac{\sec \left (\frac{c}{2}\right ) \sec ^7\left (\frac{1}{2} (c+d x)\right ) \left (1652 \sin \left (c+\frac{d x}{2}\right )-1428 \sin \left (c+\frac{3 d x}{2}\right )+756 \sin \left (2 c+\frac{3 d x}{2}\right )-560 \sin \left (2 c+\frac{5 d x}{2}\right )+168 \sin \left (3 c+\frac{5 d x}{2}\right )-104 \sin \left (3 c+\frac{7 d x}{2}\right )+735 d x \cos \left (c+\frac{d x}{2}\right )+441 d x \cos \left (c+\frac{3 d x}{2}\right )+441 d x \cos \left (2 c+\frac{3 d x}{2}\right )+147 d x \cos \left (2 c+\frac{5 d x}{2}\right )+147 d x \cos \left (3 c+\frac{5 d x}{2}\right )+21 d x \cos \left (3 c+\frac{7 d x}{2}\right )+21 d x \cos \left (4 c+\frac{7 d x}{2}\right )-1988 \sin \left (\frac{d x}{2}\right )+735 d x \cos \left (\frac{d x}{2}\right )\right )}{2688 a^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(-4),x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^7*(735*d*x*Cos[(d*x)/2] + 735*d*x*Cos[c + (d*x)/2] + 441*d*x*Cos[c + (3*d*x)/2] + 4
41*d*x*Cos[2*c + (3*d*x)/2] + 147*d*x*Cos[2*c + (5*d*x)/2] + 147*d*x*Cos[3*c + (5*d*x)/2] + 21*d*x*Cos[3*c + (
7*d*x)/2] + 21*d*x*Cos[4*c + (7*d*x)/2] - 1988*Sin[(d*x)/2] + 1652*Sin[c + (d*x)/2] - 1428*Sin[c + (3*d*x)/2]
+ 756*Sin[2*c + (3*d*x)/2] - 560*Sin[2*c + (5*d*x)/2] + 168*Sin[3*c + (5*d*x)/2] - 104*Sin[3*c + (7*d*x)/2]))/
(2688*a^4*d)

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 94, normalized size = 0.9 \begin{align*}{\frac{1}{56\,d{a}^{4}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{7}}-{\frac{1}{8\,d{a}^{4}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}+{\frac{11}{24\,d{a}^{4}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{15}{8\,d{a}^{4}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{a}^{4}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))^4,x)

[Out]

1/56/d/a^4*tan(1/2*d*x+1/2*c)^7-1/8/d/a^4*tan(1/2*d*x+1/2*c)^5+11/24/d/a^4*tan(1/2*d*x+1/2*c)^3-15/8/d/a^4*tan
(1/2*d*x+1/2*c)+2/d/a^4*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.72866, size = 151, normalized size = 1.36 \begin{align*} -\frac{\frac{\frac{315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{77 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac{336 \, \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}}{168 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

-1/168*((315*sin(d*x + c)/(cos(d*x + c) + 1) - 77*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos
(d*x + c) + 1)^5 - 3*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 336*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^
4)/d

________________________________________________________________________________________

Fricas [A]  time = 1.62136, size = 397, normalized size = 3.58 \begin{align*} \frac{21 \, d x \cos \left (d x + c\right )^{4} + 84 \, d x \cos \left (d x + c\right )^{3} + 126 \, d x \cos \left (d x + c\right )^{2} + 84 \, d x \cos \left (d x + c\right ) + 21 \, d x -{\left (52 \, \cos \left (d x + c\right )^{3} + 124 \, \cos \left (d x + c\right )^{2} + 107 \, \cos \left (d x + c\right ) + 32\right )} \sin \left (d x + c\right )}{21 \,{\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

1/21*(21*d*x*cos(d*x + c)^4 + 84*d*x*cos(d*x + c)^3 + 126*d*x*cos(d*x + c)^2 + 84*d*x*cos(d*x + c) + 21*d*x -
(52*cos(d*x + c)^3 + 124*cos(d*x + c)^2 + 107*cos(d*x + c) + 32)*sin(d*x + c))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d
*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec{\left (c + d x \right )} + 1}\, dx}{a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))**4,x)

[Out]

Integral(1/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x)/a**4

________________________________________________________________________________________

Giac [A]  time = 1.44155, size = 112, normalized size = 1.01 \begin{align*} \frac{\frac{168 \,{\left (d x + c\right )}}{a^{4}} + \frac{3 \, a^{24} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 21 \, a^{24} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 77 \, a^{24} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 315 \, a^{24} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{28}}}{168 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

1/168*(168*(d*x + c)/a^4 + (3*a^24*tan(1/2*d*x + 1/2*c)^7 - 21*a^24*tan(1/2*d*x + 1/2*c)^5 + 77*a^24*tan(1/2*d
*x + 1/2*c)^3 - 315*a^24*tan(1/2*d*x + 1/2*c))/a^28)/d